An Eigenvalue test for spatial principal component analysis
نویسندگان
چکیده
منابع مشابه
Regularized Principal Component Analysis for Spatial Data
Abstract: In many atmospheric and earth sciences, it is of interest to identify dominant spatial patterns of variation based on data observed at p locations with n repeated measurements. While principal component analysis (PCA) is commonly applied to find the patterns, the eigenimages produced from PCA may be noisy or exhibit patterns that are not physically meaningful when p is large relative ...
متن کاملPrincipal Component Analysis and Qualitative Spatial Reasoning
In this big data modern age, enormous size of data is a challenge for the computer algorithms as well as hardware because important information is hidden in the data. Principal Component Analysis (PCA) is used to transform the data so that meaningful information becomes explicit. The huge dimensional data can be approximated with a few dimensions. Qualitative Spatial Reasoning (QSR), spatial or...
متن کاملPrincipal Component Projection Without Principal Component Analysis
We show how to efficiently project a vector onto the top principal components of a matrix, without explicitly computing these components. Specifically, we introduce an iterative algorithm that provably computes the projection using few calls to any black-box routine for ridge regression. By avoiding explicit principal component analysis (PCA), our algorithm is the first with no runtime dependen...
متن کاملCompression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کاملAn Empirical Comparison between Grade of Membership and Principal Component Analysis
t is the purpose of this paper to contribute to the discussion initiated byWachter about the parallelism between principal component (PC) and atypological grade of membership (GoM) analysis. The author testedempirically the close relationship between both analysis in a lowdimensional framework comprising up to nine dichotomous variables and twotypologies. Our contribution to the subject is also...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Bioinformatics
سال: 2017
ISSN: 1471-2105
DOI: 10.1186/s12859-017-1988-y